
GlSurf 3.3 Documentation

Christophe Raffalli

June 4, 2016

Contents

1 Introduction. 1

2 Installation. 2
2.1 Via opam . 2
2.2 Compilation from source . 2

3 Commands 2

4 Syntax. 6

5 Global parameters. 7

6 Surface and curve parameters. 7

7 Drawing parameters. 9

8 Light parameters. 9

9 Key bindings. 9

10 Mouse control 10

11 Compilation 11

12 Interface with POVRay 11

13 An example. 11

1 Introduction.

GlSurf is a program (similar to Surf: http://surf.sourceforge.net) to draw 3D surfaces or
3D curves from their implicit equations (that is drawing the set of points (x, y, z) such that
f(x, y, z) = 0).

It offers an intuitive and simple syntax to construct your functions, it can draw multiple surfaces
simultaneously and it can use all the power of OpenGl to animate the surface, use transparency,
etc ...

GlSurf is a “command interpreter”: you type some commands and it executes them ! This
document is mainly a list of commands and a description of the different syntactic items.

A good way to use GlSurf is to write a sequence of commands in a file and then type
glsurf file to execute all the commands or to drag and drop this file on the glsurf executable,
on some OS’s.

1

2 Installation.

2.1 Via opam

The recommanded installation is via opam:

opam install glsurf

2.2 Compilation from source

You need first to install Objective Caml, lablGL and camlimages. For camlimages, it may be
better to first install a few library (jpeg, gif, ungif, . . .) for GlSurf to support more file formats.

Finally you can type make and sudo make install. The name of the program is glsurf. In
case of problem, you should first edit the file Makefile.config.

3 Commands

We first give the list of commands that the glsurf command is able to interpret. Usual conventions
like square bracket for optional parts or italic for category are used.

(* ... *) is a comment. nested comments are not yet supported.

add draw string, ...; add a curve or surface to the current draw command.

area ident; computes the area of a surface previously build using the surface command. Note:
you compute the surface of the triangulation which is only an approximation and if your
surface is not compact, only the triangulated part inside a cube is measured.

auto next int draw command will proceed to the next draw command after the given time. This
is useful when using the input on a file whose draw commands have no defined pause. This
allows for building a slide show.

auto rotate int will rotate the image automatically with a rotation axes which is itself rotating.
The parameter give a time before the rotation starts. Give a negative value to stop the
rotation.

begin ... end the modification of parameters or values between begin and end are not visible
outside except for the curves and surfaces. This allows to change some parameters to compute
some surfaces and curves and then restores the previous values.

color ident = (float, . . .); defines a new color (may have 3 of 4 components: rgb or rgba, the
fourth component if for transparency). In fact this command is identical to vector and
point!

curve [on ident1 refine ident2 adapt ident3]ident = expression; takes an expression f using
the variables x, y, z and builds the intersection of the surface ident1, the surface f(x, y, z) = 0
and the bounding cube (see the description of the origin and size variables). The surface
ident1 should be computed previously using the surface command.

If on ident1 if not given, the plane z = 0 is used.

If refine ident2 is given, a refined version of the surface ident1 is computed: to draw a
curve, the triangle composing a surface may be divided in smaller triangles. If you draw the
curve and the surface ident1, the curve may not appear exactly on the surface. If ident1 and
ident2 are identical, then the refined surface replaces the old one.

If adapt ident3 is given, the curve is constructed by deformation of a previously build curve
named ident3. The Newton method is used to move the curve points. Therefore, it will

2

always fail if the topology of the curve changes and sometimes fail is the points move too
far.

The global and curve parameters such as line color, ... are evaluated when the curve com-
mand is called and the curve will always be drawn with these values. Further modification
of parameters will not affect previously defined curve (see the sections “global parameters”
and “surface and curve parameters”).

cache bool if set to true (default false), all computed discretization are saved in a folder and
loaded from that folder if allready computed.

cache directory string set the name of the folder used to save cached surfaces and curves. De-
fault: ".glsurf_cache".

curve mode bool; activates of deactivate the curve mode. This changes the behavior of some
keys and the mouse. This must should be on or true when displaying plane curve on the
plane z = 0. Otherwise it should be true or false.

delete ident, ...; deletes the given surfaces or curves. Surfaces can take quite a lot of memory,
so it may be a good idea to delete the unused ones.

display; forces an openGL redisplay.

draw [pause int]string, ...; draw the surfaces or curves whose name are given (they must have
been computed before using the surface or the curve commands). See the section “key
bindings” to see how to animate the image.

The draw command restarts from an empty scene using the current background color.

The command coming after a draw instruction are executed concurrently, but the next draw
command will not be executed until

• The “n” key (for next) is pressed

• The pause option is given and the given time in millisecond as ellapsed.

full screen bool; turn on of off the full screen mode.

include string; load the file whose name is given.

initial position; reset the camera position. It reads the drawing parameter like origin and
size.

input string; same as include.

invert ident ... ident -¿ ident ... ident . The command invert d1 ... dn -> D1 ... Dn

takes n first degree polynomials in n variables d1, ..., dn and define n first degree polynomials
in n variablesD1, ..., Dn, such that the plane transformation (x1, . . . , xn) 7→ D1(x1, . . . , xn), . . . , Dn(x1, . . . , xn)
is the inverse of the transformation (x1, . . . , xn) 7→ d1(x1, . . . , xn), . . . , dn(x1, . . . , xn).

let ident = expression; defines a new value for an identifier. Examples:

let x = 2 * pi;

There are predefined identifiers: pi, true, false, fastest, nicest, dont care, off.

length ident give the length of the given curve.

let ident(ident, ...) = expression; defines a new function. You can use as many variables as you
want, and you can use this function in future expressions.

let f(x,y,z) = x^2 + y^2 + z^2 - sin(x*y*z);

3

note: the only predefined functions are exp, log, sin, cos, sqrt. Other functions may be
added in future version is someone asks for them !

light int (float, ...); defines the light number i (where i is the given integer between 0 and 7)
at the given position. The position may use affine coordinate (3 components) or projective
coordinates (4 components). This light uses the current value of the light color parameters.
By default there are two lights at position (0.8, 0.8, 1.0, 0.0) and (−0.8,−0.8, 1.0, 0.0), using
the default light color parameters. The last component being zero, this means that the light
are at the infinite in the direction given by the three first components.

See the section “light parameters” to set the light color.

light int bool; turn on of off the light whose number is given.

line ident = ident ident; define the equation of a line given two points that must be on the line
(the points should be distinct). Only the two first coordinates of the point are considered.

load ident string; load the triangulation of an object previously saved in a file using the save

command.

object ident = objdef; allow to draw polytopes, lines or points. objdef is a list of comment
choosed among the following:

vertices (x1,y1,z1) (x2,y2,z2) ...;
triangles (a1,b1,c1) (a2,b2,c2) ...;
line a1,a2,...;
points a1,a2,...;
text (x1,y1,z1) string;
let ... ;
while ...;

• The vertices commands define an array A of points in space.

• The triangles commands define a list of triangles that belong to the object. The
vertices of the triangles are defined as indices in the array A.

• Each line command defines a broken line starting at the first point and ending at the
last point. The vertices of the triangles are defined as indices in the array A.

• The points command define a list of points by their indice in the array A.

• The text command places a text at the given coordinates.

• General let and while commands are allowed inside objects. It does not affect external
definition (same semantics as begin ... end

When the object is build, the parameters line ... affect all lines in the object, the param-
eters point ... affect all points and the other parameters affect the triangles.

Here is an example (a cube will all its faces, edges and vertices (See the file examples/Other/cube):

object cube =

vertices (0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1)

(1, 0, 0) (1, 0, 1) (1, 1, 0) (1, 1, 1);

triangles(0, 2, 1) (1, 2, 3) (4, 5, 6) (5, 7, 6)

(0, 1, 4) (1, 5, 4) (2, 6, 3) (3, 6, 7)

(0, 4, 2) (2, 4, 6) (1, 3, 5) (3, 7, 5);

line 0,1,3,2,0;

line 4,5,7,6,4;

line 0,4;

line 1,5;

4

line 2,6;

line 3,7;

points 0,1,2,3,4,5,6,7;

;

message ident = string; add the given message to the screen. The 2D coordinates of the message
are taken from the parameter message x and message y. You can use remove message to
remove the message.

newton ident = (expr ... expr) (ident ... ident) (expr ... expr); The command newton P = (f1(x1, . . . , xn), . . . , fn(x1, . . . , xn))
(x1, . . . , xn) (a1, . . . , an); will apply the newton algorithm starting from point (a1, . . . , an),
to try to find a solution of the equation f1(x1, . . . , xn) = 0, . . . , fn(x1, . . . , xn) = 0. The
solution is stored in the point P .

pause int; pause the display for the given time in milliseconds.

plane ident = ident ident ident; define the equation of a plane given three points that must be
on the plane (the points should not be aligned). Only the three first coordinates of the point
are considered.

point ident = (float, . . .); defines a new point. In fact this command is identical to vector and
color!

print expression; prints an expression on the terminal.

quality ident; gives the quality of the surface whose name is given. The quality of a triangle is
the length of biggest side divided by the length of the smallest side. The average and the
worst quality are given.

If a surface is not singular or too complex (the warning minsize reached is not printed),

then the worst quality should be smaller that
√

3× 21+max division diff

quit; quit the program.

remove draw ident; remove an object from the current display (see add draw).

remove message ident; remove the message with the given name (see the message command).

save ident string; save the triangulation of an object in a file. The object may be loaded using
the load command.

save image string; save the current image in a file. The image format is determined from the
extension by Camlimages library.

string ident = string; Set the value of the given string parameters. Remark: you can not create
new variables of type string using this command (as you can with let). The only string
parameters are: file_format, file_prefix, pov_line_texture, pov_point_texture,
pov_surface_texture and pov_preambule.

surface ident = expression; takes an expression f using the variables x, y, z and builds the
intersection of the surface f(x, y, z) = 0 with the bounding cube (see the description of the
origin and size variables).

The program builds a triangulation of the surface. The global and surface parameters
such as front ambient, ... are evaluated the first time the surface command is called.
Further modification of these parameters are ignored (see the sections “global parameters”
and “surface and curve parameters”).

The color of the surface is controlled by the variables described in the section “surface
parameters”.

5

surface texture ...; to be documented when finished.

topology ident; computes the Euler characteristics of the surface. It’s main purpose is to check
the correctness of the triangulation. The algorithm seems now good enough to compute the
correct Euler characteristics in most cases.

More precisely, your surface needs to be smooth (if someone can tell me how to build a correct
triangulation of a singular surface ...) and the program should not say Minsize reached

xxx times. To achieve this you can lower the value of the surface parameter min size, but
the computation will take more time and memory.

Note: it is very easy to construct equation of smooth surfaces were some components will
never be discovered by GlSurf ... But you can always change the surface parameters to try
to get the correct answer.

Note bis: it is not so easy to find algebraic smooth (or even analytic) surfaces that are not
triangulated correctly and that do not print the minsize reached warning !

vector ident = (float, . . .); defines a new vector.

while expr pred expr ... while loops. The predicate may be <=, <, >=, >, =, !=.

4 Syntax.

bool: the boolean: true, false, on or off.

float: the usual syntax, examples: 4, 4.2, -4e12, 0.005.

ident: sequence of characters using [a-zA-Z0-9] and starting with [a-zA-Z]. Examples: toto, ti ti,
s1.

int: the usual syntax, examples: 4, 3, -2.

string: string with usual C syntax. Examples "this is a \"string\"".

expressions: usual syntax, with usual priorities. Examples:

let pt1(x,y,z) = z - 1;

let pt2(x,y,z) = -1*cy*y + cz*z + 1;

let pt3(x,y,z) = sin(2*pi/3)*cy*x -cos(2*pi/3)*cy*y + cz*z + 1;

let pt4(x,y,z) = sin(4*pi/3)*cy*x -cos(4*pi/3)*cy*y + cz*z + 1;

let q0(x,y,z) = pt1(x,y,z)*pt2(x,y,z)*pt3(x,y,z)*pt4(x,y,z);

There are seven predefined identifiers: pi, true, false, fastest, nicest, dont care, on,
off and few unary functions: exp, log, sin, cos, tan, asin, acos, atan, sqrt. Other
functions may be added in future version if someone asks for them ! There are also two
predefined binary functions min, max.

Note: function composition is allowed ! You can write f(g(x, y, z), h(y)) if the function have
the correct number of arguments.

You can also perform formal transformation of expressions:

derive(expression,variable) means the derivative of an expression (example: derive(x2, x)
means 2 ∗ x).

simplify(expression) simplifies an expression.

develop(expression) develops an expression.

6

5 Global parameters.

The current value of the following parameters are used both when you use the object, surface,
curve and the draw commands:

file format (type: string, default: "png") the format used to save images (see the binding of the
“s” and “r” keys).

file prefix (type: string, default: "image") the prefix used to generate file names when saving
images (see the binding of the “s” key and “r” keys).

origin (type: vector3, default: (0, 0, 0)) center if the initial cube (the bounding cube).

compute origin (type: vector3, default: (0, 0, 0)) center if the initial cube (the bounding cube).
If defined, it is use for computing surfaces and curves, but origin is still use for the position
of the camera.

compute size (type: vector3, default: 2) diameter of the initial cube (length of the edges). initial
cube (the bounding cube). If defined, it is use for computing surfaces and curves, but size
is still use for the position of the camera.

pov preambule (type: string, default: "") A preambule added to any POVRay file generated.
(a default preambule is build from the OpenGL parameters if the value is ""). See section
12 about the POVRay interface.

size (type: float, default: 2) diameter of the initial cube (length of the edges).

6 Surface and curve parameters.

The current value of the following parameters are attached to the build object when you call the
surface, curve or object commands:

adjust angle (type: float, default: π/2.0) to minimize the number of triangles, the cube vertexes
are moved if near to the surface. But they are not moved if the angle between the normal
of the surface at the new position and the normal at any point on the surface in the same
cube is greater that adjust angle.

The value of adjust angle should be greater than the value of max angle otherwise some
vertexes can not be moved and a lot of small triangles are not eliminated.

adjust factor (type float, default 2.0) if l is the size of the smallest cube edge at vertex v, then v
will not be moved further than l divided by adjust factor. This parameter must be greater
than 2.

adjust try newton (type bool, default true) If this parameter is true, a newton algorithm is
used to try to move the cube vertexes.

back ambient (type: vector4, default: (0.2, 0.2, 0.2, 1.0)) ambient color of the back faces of the
surface.

back diffuse (type: vector4, default: (0.3, 0.7, 0.2, 1.0)) diffused color of the back faces of the
surface.

back shininess (type: float, default: 60.0) shininess of the back faces of the surface.

back specular (type: vector4, default: (0.7, 0.7, 0.7, 1.0)) specular color of the back faces of the
surface.

7

compile (type: bool, default: false) if true, the component of the function are compiled (a C
file is produced, compiled and linked with the program). This allows to increase speed for
complex function but you need a C compiler installed (see the compilation section).

epsilon (type: float, default: 1e-10) used for numerical computation.

flip diagonals (type: bool, default: true) When computing surfaces, try to flip edges between
two triangles to get a Delaunay (approximatively) triangulation of the surface.

front ambient (type: vector4, default: (0.2, 0.2, 0.2, 1.0)) ambient color of the front faces of the
surface.

front diffuse (type: vector4, default: (0.7, 0.3, 0.2, 1.0)) diffused color of the front faces of the
surface.

front shininess (type: float, default: 60.0) shininess of the front faces of the surface.

front specular (type: vector4, default: (0.7, 0.7, 0.7, 1.0)) specular color of the front faces of the
surface.

line color (type: vector4, default: (1.0, 1.0, 1.0, 1.0)) line color (use to display curves).

line width (type: float, default: 2) line width (use to display curves). This parameter may often
be ignored by graphic cards and this may depend upon the value of line smooth. If the
graphic card really obeys the OpenGL specification, this parameter should not be ignored
when line smooth is off. However, this parameter is correctly used in POVRay files.

min size (type: float, default: size × 0.01, size is a global parameter) minimal size of a cube.
No cube smaller than this value are considered.

out max angle (type: float, default: π/4) maximum angle between
−→
df at two vertexes of the

same cube. If it in not the case, and if the size of the cube is greater than min size, then
the cube is divided in height cubes.

point color (type: vector4, default: (1.0, 1.0, 1.0, 1.0)) point color (use to display points).

point size (type: float, default: 2). This parameter may often be ignored by graphic cards and
this may depend upon the value of point smooth. If the graphic card really obeys the
OpenGL specification (which is not always the case), this parameter should not be ignored
when point smooth is off. However, this parameter is correctly used in POVRay files.

pov isosurface (type: bool, default: false) when sending a surface to POVRay, if a polynomial
(see the pov poly parameter) is not used then, if the parameter is true GlSurf will output
an isosurface (this may result in quite slow rendering). If it is false, GlSurf will output all
the triangles in the POVRay file (resulting in a quite large file).

pov line texture (type: string, default: "") the texture applied to curves and lines when using
POVRay (a texture is build from the OpenGL parameters if the value is ""). See section 12
about the POVRay interface.

pov point texture (type: string, default: "") the texture applied to points when using POVRay
(a default texture is build from the OpenGL parameters if the value is ""). See section 12
about the POVRay interface.

pov poly (type: bool, default: true) try to use polynomial (poly) is POVRay files. It works if
the function is a polynomial of degree less or equal to seven.

pov surface texture (type: string, default: "") the texture applied to surfaces and triangles
when using POVRay (a default texture is build from the OpenGL parameters if the value is
""). See section 12 about the POVRay interface.

8

max angle (type: float, default: π/8) maximum angle between the normal of two points on the
surface in the same cube. If it in not the case, and if the size of the cube is greater than
min size, then the cube is divided in height cubes.

max division diff (type: int, default 2) maximum difference between the number of division of
adjacent cubes.

min depth (type: int, default: 2) minimum number of divisions of the initial cube. 8min depth is
the minimum number of considered cubes. Do not increase this parameter to much!

text color (type: vector4, default: (1.0, 1.0, 1.0, 1.0)) color to use for texts in object.

transparent (type: bool, default: false) is this surface transparent ? If the surface is transparent,
it is better to have the same front and back colors.

7 Drawing parameters.

The current value of the following parameters are used every time you use the draw command:

background (type: vector3, defaults (0.1, 0.1, 0.3)) the background color.

lmodel ambient (type: vector4, default (0.2, 0.2, 0.2, 1.0)) ambient color of the light model.

lmodel twoside (type: bool, default: true) if false, front colors are used for both sides of all
surfaces.

fog (type: off| fastest| nicest| dont care, default: off).

perspective correction (type: fastest| nicest| dont care, default: fastest).

line smooth (type: off|fastest| nicest| dont care, default: fastest).

point smooth (type: off|fastest| nicest| dont care, default: fastest).

polygon smooth (type: off|fastest| nicest| dont care, default: fastest).

8 Light parameters.

The lights created using the light command will use the current value of these parameters:

light ambient ambient color for the lights.

light diffuse diffuse color for the lights.

light specular specular color for the lights.

9 Key bindings.

A special point named “the target” is placed in front of the observer. Initially the target is the
origin, that is the center of the initial cube.

→ rotate the surfaces to the right around the target.

← rotate the surfaces to the left around the target.

↑ rotate the surfaces upward around the target.

↓ rotate the surfaces downward around the target.

9

Esc|x|X quit the program immediately.

Home|i|I reset the observer position to its initial value.

PageUp| > multiply the distance to the target by
√

2.

PageDown| < divide the distance to the target by
√

2.

4 rotate the observer counter clockwise.

6 rotate the observer clockwise.

2 rotate the observer upward.

8 rotate the observer downward.

1 rotate the observer to the left.

3 rotate the observer to the right.

Space move forward toward the target (in curve mode, from the initial position, you move toward
the plane z = 0 and never traverses it).

b|B move backward from the target.

c|C toggles the curve mode (see the Slide mode of the mouse bindings).

e|E displays the edges of all triangles.

f |F switch between full-screen and normal mode.

m|M see the mouse control section.

p|P prints the position of the observer and the target (the orientation of the observer is also
printed as the right, up and front vector).

n|N quit the current drawing (specified by a d
¯
raw command and processes the next one (or wait

until it is ready).

r|R produces a POVRay file describing the current scene named xxxd.pov where xxx is set by
the file prefix gobal parameter (default image), d is an integer. If the povray command
is in the PATH, GlSurf calls POVRay on this file to produce an image file named xxxd.png.

s|S save the current image in a file. The filename is xxxd.yyy where xxx is set by the file prefix

global paramer (default image), d is an integer and yyy is set by the file format global
paramer (default png). The supported format are those supported by camlimages (some
format require that specific library be installed prior to the compilation of camlimages).

Note: preexisting files are not replaced nor removed.

10 Mouse control

The are four ways to control the display using the mouse. In all the cases, we use the same
principle, if the mouse cursor is where you pressed the button nothing moves. Movement speed is
proportional to the distance from this position. This may be confusing at the beginning, but it is
nice when you learn how to use it.

Here are the four control modes

Slide mode (activated using the left mouse button) slides the observer right/left/up/down ac-
cording to the mouse cursor position. In curve mode (see the key binding for “c”), from the
initial position (use the Home key), you can really drag the curve.

10

Rotate mode (activated using the right mouse button) rotate the object arround the it target
point according to the mouse cursor position (see the PageUp and PageDown key). Initially
the target is at position (0,0,0)

Direction mode (activated using the middle mouse button) rotates the observer on its vertical
axes when moving the mouse cursor right/left; moves the observer forward when moving the
mouse cursor up/down.

Fly mode (activated by pressing the “m—M” key and deactivated by pressing the same key
again) rotate the observer up, down, right or left (around horizontal axes) according to the
mouse cursor position. You can use this mode together with the “space” key to fly like in a
flight simulator (needs some training). Remark: the mouse cursor disappear in this mode.

11 Compilation

The glsurf program can call a C compiler to compile function. The variable compile should be
true for the program to compile function.

The access to the C compiler is controlled by the following environment variables:

CC (default “gcc”) the compiler name. If the value of CC is NONE, then GlSurf will not try to
use a C compiler. This is useful on windows 98 where it seems that GlSurf can not detect
the absence of the C compiler automatically.

CCTEST (default “-v”) arguments send to the compiler to test if it works.

CCSHOPTS (defaults “-shared -lm”) the compilation option to compile a shared library from
a C file containing the definition of a few functions using floats.

12 Interface with POVRay

GlSurf can produce file for POVRay a free ray tracer. See the description of the “r” key binding.

13 An example.

(* construction of a quartic with 10 components *)

(* some initial parameters *)

let compile = true;

let size = 4.2; let min_size =1e-5;

let max_angle = pi/6;

(* four planes on the face of a regular tetrahedron *)

let tetra_angle = pi - (109.47122063449069174*pi/180);

let cz = cos(tetra_angle);

let cy = sin(tetra_angle);

let pt1(x,y,z) = z - 1;

let pt2(x,y,z) = -1*cy*y + cz*z + 1;

let pt3(x,y,z) = sin(2*pi/3)*cy*x -cos(2*pi/3)*cy*y + cz*z + 1;

let pt4(x,y,z) = sin(4*pi/3)*cy*x -cos(4*pi/3)*cy*y + cz*z + 1;

begin (**************************************)

vector front_diffuse = (0.2, 0.2, 0.8, 0.5);

vector back_diffuse = (0.7, 0.7, 0.2, 0.5);

11

vector background = (0.2, 0.2, 0.2);

surface p1 = pt1(x,y,z);

surface p2 = pt2(x,y,z);

surface p3 = pt3(x,y,z);

surface p4 = pt4(x,y,z);

end (**)

draw p1,p2,p3,p4;

let r1 = 2;

(* a well choosen sphere *)

let s1(x,y,z) = x^2 + y^2 + z^2 - r1^2;

begin (**************************************)

vector front_diffuse = (0.7, 0.4, 0.4, 0.5);

vector back_diffuse = (0.7, 0.4, 0.4, 0.5);

let transparent = true;

let max_angle = pi/24;

surface s1 = s1(x,y,z);

end (**)

draw p1,p2,p3,p4,s1;

(* the intersection of the planes and the sphere *)

curve [on s1] i1 = pt1(x,y,z);

curve [on s1] i2 = pt2(x,y,z);

curve [on s1] i3 = pt3(x,y,z);

curve [on s1] i4 = pt4(x,y,z);

draw i1,i2,i3,i4,s1;

(* the final quartic: the square of the sphere pertubated by the four planes *)

let ra = 0.05;

let a = 0.5;

(* product i.e. union of the four planes *)

let q0(x,y,z) = pt1(x,y,z)*pt2(x,y,z)*pt3(x,y,z)*pt4(x,y,z);

begin (**************************************)

vector front_diffuse = (0.2, 0.2, 0.8, 0.5);

vector back_diffuse = (0.7, 0.7, 0.2, 0.5);

let transparent = false; let max_angle = pi/6;

surface q0 = q0(x,y,z) + a*s1(x,y,z)^2 + ra;

end (**)

print q0(x,y,z);

draw q0,s1,i1,i2,i3,i4;

draw q0,i1,i2,i3,i4;

delete i1,i2,i3,i4;

draw q0;

topology q0;

quality q0;

12

(* what if we change the sign of the pertubation ? *)

let size = 6.5;

let ra = 0.01;

begin (**************************************)

vector front_diffuse = (0.2, 0.2, 0.8, 0.5);

vector back_diffuse = (0.7, 0.7, 0.2, 0.5);

let transparent = false; let max_angle = pi/6;

surface q0 = q0(x,y,z) - a*s1(x,y,z)^2 + ra;

end (**)

draw q0,s1;

draw q0;

topology q0;

quality q0;

13

